Files
pvc/daemon-common/benchmark.py
Joshua M. Boniface 736762901c Update benchmarks to include resource utilization
Adds additional polled information on node cpu, memory, and network
bandwidth for the node running the test. This should provide additional
useful information about the results of the test.

Also bumps the test format to 2 to ensure clients can handle the changes
properly.
2024-09-18 14:32:03 -04:00

578 lines
17 KiB
Python

#!/usr/bin/env python3
# benchmark.py - PVC API Benchmark functions
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2024 Joshua M. Boniface <joshua@boniface.me>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
import os
import psutil
import psycopg2
import psycopg2.extras
import subprocess
from datetime import datetime
from json import loads, dumps
from time import sleep
from daemon_lib.celery import start, fail, log_info, update, finish
import daemon_lib.ceph as pvc_ceph
# Define the current test format
TEST_FORMAT = 2
# We run a total of 8 tests, to give a generalized idea of performance on the cluster:
# 1. A sequential read test of 64GB with a 4M block size
# 2. A sequential write test of 64GB with a 4M block size
# 3. A random read test of 64GB with a 4M block size
# 4. A random write test of 64GB with a 4M block size
# 5. A random read test of 64GB with a 256k block size
# 6. A random write test of 64GB with a 256k block size
# 7. A random read test of 64GB with a 4k block size
# 8. A random write test of 64GB with a 4k block size
# Taken together, these 8 results should give a very good indication of the overall storage performance
# for a variety of workloads.
test_matrix = {
"seq_read": {
"direction": "read",
"iodepth": "64",
"bs": "4M",
"rw": "read",
},
"seq_write": {
"direction": "write",
"iodepth": "64",
"bs": "4M",
"rw": "write",
},
"rand_read_4M": {
"direction": "read",
"iodepth": "64",
"bs": "4M",
"rw": "randread",
},
"rand_write_4M": {
"direction": "write",
"iodepth": "64",
"bs": "4M",
"rw": "randwrite",
},
"rand_read_4K": {
"direction": "read",
"iodepth": "64",
"bs": "4K",
"rw": "randread",
},
"rand_write_4K": {
"direction": "write",
"iodepth": "64",
"bs": "4K",
"rw": "randwrite",
},
"rand_read_4K_lowdepth": {
"direction": "read",
"iodepth": "1",
"bs": "4K",
"rw": "randread",
},
"rand_write_4K_lowdepth": {
"direction": "write",
"iodepth": "1",
"bs": "4K",
"rw": "randwrite",
},
}
# Specify the benchmark volume name and size
benchmark_volume_name = "pvcbenchmark"
benchmark_volume_size = "64G"
#
# Exceptions (used by Celery tasks)
#
class BenchmarkError(Exception):
pass
#
# Common functions
#
def cleanup(job_name, db_conn=None, db_cur=None, zkhandler=None, final=False):
if db_conn is not None and db_cur is not None:
if not final:
# Clean up our dangling result (non-final runs only)
query = "DELETE FROM storage_benchmarks WHERE job = %s;"
args = (job_name,)
db_cur.execute(query, args)
db_conn.commit()
# Close the database connections cleanly
close_database(db_conn, db_cur)
if zkhandler is not None:
zkhandler.disconnect()
del zkhandler
# Database connections
def open_database(config):
conn = psycopg2.connect(
host=config["api_postgresql_host"],
port=config["api_postgresql_port"],
dbname=config["api_postgresql_dbname"],
user=config["api_postgresql_user"],
password=config["api_postgresql_password"],
)
cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor)
return conn, cur
def close_database(conn, cur, failed=False):
if not failed:
conn.commit()
cur.close()
conn.close()
def list_benchmarks(config, job=None):
if job is not None:
query = "SELECT * FROM {} WHERE job = %s;".format("storage_benchmarks")
args = (job,)
else:
query = "SELECT * FROM {} ORDER BY id DESC;".format("storage_benchmarks")
args = ()
conn, cur = open_database(config)
cur.execute(query, args)
orig_data = cur.fetchall()
data = list()
for benchmark in orig_data:
benchmark_data = dict()
benchmark_data["id"] = benchmark["id"]
benchmark_data["job"] = benchmark["job"]
benchmark_data["test_format"] = benchmark["test_format"]
if benchmark["result"] == "Running":
benchmark_data["benchmark_result"] = "Running"
else:
try:
benchmark_data["benchmark_result"] = loads(benchmark["result"])
except Exception:
benchmark_data["benchmark_result"] = {}
# Append the new data to our actual output structure
data.append(benchmark_data)
close_database(conn, cur)
if data:
return data, 200
else:
return {"message": "No benchmark found."}, 404
def prepare_benchmark_volume(
pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
# Create the RBD volume
retcode, retmsg = pvc_ceph.add_volume(
zkhandler, pool, benchmark_volume_name, benchmark_volume_size
)
if not retcode:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f'Failed to create volume "{benchmark_volume_name}" on pool "{pool}": {retmsg}',
)
else:
log_info(None, retmsg)
def cleanup_benchmark_volume(
pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
# Remove the RBD volume
retcode, retmsg = pvc_ceph.remove_volume(zkhandler, pool, benchmark_volume_name)
if not retcode:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f'Failed to remove volume "{benchmark_volume_name}" from pool "{pool}": {retmsg}',
)
else:
log_info(None, retmsg)
def run_benchmark_job(
config, test, pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
test_spec = test_matrix[test]
log_info(None, f"Running test '{test}'")
fio_cmd = """
fio \
--name={test} \
--ioengine=rbd \
--pool={pool} \
--rbdname={volume} \
--output-format=json \
--direct=1 \
--randrepeat=1 \
--numjobs=1 \
--time_based \
--runtime=75 \
--group_reporting \
--iodepth={iodepth} \
--bs={bs} \
--readwrite={rw}
""".format(
test=test,
pool=pool,
volume=benchmark_volume_name,
iodepth=test_spec["iodepth"],
bs=test_spec["bs"],
rw=test_spec["rw"],
)
log_info(None, "Running fio job: {}".format(" ".join(fio_cmd.split())))
# Run the fio command manually instead of using our run_os_command wrapper
# This will help us gather statistics about this node while it's running
process = subprocess.Popen(
fio_cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
# Wait 15 seconds for the test to start
log_info(None, "Waiting 15 seconds for test resource stabilization")
sleep(15)
# Set up function to get process CPU utilization by name
def get_cpu_utilization_by_name(process_name):
cpu_usage = 0
for proc in psutil.process_iter(["name", "cpu_percent"]):
if proc.info["name"] == process_name:
cpu_usage += proc.info["cpu_percent"]
return cpu_usage
# Set up function to get process memory utilization by name
def get_memory_utilization_by_name(process_name):
memory_usage = 0
for proc in psutil.process_iter(["name", "memory_percent"]):
if proc.info["name"] == process_name:
memory_usage += proc.info["memory_percent"]
return memory_usage
# Set up function to get network traffic utilization in bps
def get_network_traffic_bps(interface, duration=1):
# Get initial network counters
net_io_start = psutil.net_io_counters(pernic=True)
if interface not in net_io_start:
return None, None
stats_start = net_io_start[interface]
bytes_sent_start = stats_start.bytes_sent
bytes_recv_start = stats_start.bytes_recv
# Wait for the specified duration
sleep(duration)
# Get final network counters
net_io_end = psutil.net_io_counters(pernic=True)
stats_end = net_io_end[interface]
bytes_sent_end = stats_end.bytes_sent
bytes_recv_end = stats_end.bytes_recv
# Calculate bytes per second
bytes_sent_per_sec = (bytes_sent_end - bytes_sent_start) / duration
bytes_recv_per_sec = (bytes_recv_end - bytes_recv_start) / duration
# Convert to bits per second (bps)
bits_sent_per_sec = bytes_sent_per_sec * 8
bits_recv_per_sec = bytes_recv_per_sec * 8
bits_total_per_sec = bits_sent_per_sec + bits_recv_per_sec
return bits_sent_per_sec, bits_recv_per_sec, bits_total_per_sec
log_info(None, f"Starting system resource polling for test '{test}'")
storage_interface = config["storage_dev"]
total_cpus = psutil.cpu_count(logical=True)
ticks = 1
osd_cpu_utilization = 0
osd_memory_utilization = 0
mon_cpu_utilization = 0
mon_memory_utilization = 0
total_cpu_utilization = 0
total_memory_utilization = 0
storage_sent_bps = 0
storage_recv_bps = 0
storage_total_bps = 0
while process.poll() is None:
# Do collection of statistics like network bandwidth and cpu utilization
current_osd_cpu_utilization = get_cpu_utilization_by_name("ceph-osd")
current_osd_memory_utilization = get_memory_utilization_by_name("ceph-osd")
current_mon_cpu_utilization = get_cpu_utilization_by_name("ceph-mon")
current_mon_memory_utilization = get_memory_utilization_by_name("ceph-mon")
current_total_cpu_utilization = psutil.cpu_percent(interval=1)
current_total_memory_utilization = psutil.virtual_memory().percent
(
current_storage_sent_bps,
current_storage_recv_bps,
current_storage_total_bps,
) = get_network_traffic_bps(storage_interface)
# Recheck if the process is done yet; if it's not, we add the values and increase the ticks
# This helps ensure that if the process finishes earlier than the longer polls above,
# this particular tick isn't counted which can skew the average
if process.poll() is None:
osd_cpu_utilization += current_osd_cpu_utilization
osd_memory_utilization += current_osd_memory_utilization
mon_cpu_utilization += current_mon_cpu_utilization
mon_memory_utilization += current_mon_memory_utilization
total_cpu_utilization += current_total_cpu_utilization
total_memory_utilization += current_total_memory_utilization
storage_sent_bps += current_storage_sent_bps
storage_recv_bps += current_storage_recv_bps
storage_total_bps += current_storage_total_bps
ticks += 1
# Get the 1-minute load average and CPU utilization, which covers the test duration
load1, _, _ = os.getloadavg()
load1 = round(load1, 2)
# Calculate the average CPU utilization values over the runtime
# Divide the OSD and MON CPU utilization by the total number of CPU cores, because
# the total is divided this way
avg_osd_cpu_utilization = round(osd_cpu_utilization / ticks / total_cpus, 2)
avg_osd_memory_utilization = round(osd_memory_utilization / ticks, 2)
avg_mon_cpu_utilization = round(mon_cpu_utilization / ticks / total_cpus, 2)
avg_mon_memory_utilization = round(mon_memory_utilization / ticks, 2)
avg_total_cpu_utilization = round(total_cpu_utilization / ticks, 2)
avg_total_memory_utilization = round(total_memory_utilization / ticks, 2)
avg_storage_sent_bps = round(storage_sent_bps / ticks, 2)
avg_storage_recv_bps = round(storage_recv_bps / ticks, 2)
avg_storage_total_bps = round(storage_total_bps / ticks, 2)
stdout, stderr = process.communicate()
retcode = process.returncode
resource_data = {
"avg_cpu_util_percent": {
"total": avg_total_cpu_utilization,
"ceph-mon": avg_mon_cpu_utilization,
"ceph-osd": avg_osd_cpu_utilization,
},
"avg_memory_util_percent": {
"total": avg_total_memory_utilization,
"ceph-mon": avg_mon_memory_utilization,
"ceph-osd": avg_osd_memory_utilization,
},
"avg_network_util_bps": {
"sent": avg_storage_sent_bps,
"recv": avg_storage_recv_bps,
"total": avg_storage_total_bps,
},
}
try:
jstdout = loads(stdout)
if retcode:
raise
except Exception:
return None, None
return resource_data, jstdout
def worker_run_benchmark(zkhandler, celery, config, pool):
# Phase 0 - connect to databases
cur_time = datetime.now().isoformat(timespec="seconds")
cur_primary = zkhandler.read("base.config.primary_node")
job_name = f"{cur_time}_{cur_primary}"
current_stage = 0
total_stages = 13
start(
celery,
f"Running storage benchmark '{job_name}' on pool '{pool}'",
current=current_stage,
total=total_stages,
)
try:
db_conn, db_cur = open_database(config)
except Exception:
cleanup(
job_name,
db_conn=None,
db_cur=None,
zkhandler=zkhandler,
)
fail(
celery,
"Failed to connect to Postgres",
)
current_stage += 1
update(
celery,
"Storing running status in database",
current=current_stage,
total=total_stages,
)
try:
query = "INSERT INTO storage_benchmarks (job, test_format, result) VALUES (%s, %s, %s);"
args = (
job_name,
TEST_FORMAT,
"Running",
)
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(celery, f"Failed to store running status: {e}", exception=BenchmarkError)
current_stage += 1
update(
celery,
"Creating benchmark volume",
current=current_stage,
total=total_stages,
)
prepare_benchmark_volume(
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
# Phase 2 - benchmark run
results = dict()
for test in test_matrix:
current_stage += 1
update(
celery,
f"Running benchmark job '{test}'",
current=current_stage,
total=total_stages,
)
resource_data, fio_data = run_benchmark_job(
config,
test,
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
if resource_data is None or fio_data is None:
cleanup_benchmark_volume(
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f"Failed to run fio test '{test}'",
)
results[test] = {**resource_data, **fio_data}
# Phase 3 - cleanup
current_stage += 1
update(
celery,
"Cleaning up venchmark volume",
current=current_stage,
total=total_stages,
)
cleanup_benchmark_volume(
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
current_stage += 1
update(
celery,
"Storing results in database",
current=current_stage,
total=total_stages,
)
try:
query = "UPDATE storage_benchmarks SET result = %s WHERE job = %s;"
args = (dumps(results), job_name)
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(celery, f"Failed to store test results: {e}", exception=BenchmarkError)
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
final=True,
)
current_stage += 1
return finish(
celery,
f"Storage benchmark {job_name} completed successfully",
current=current_stage,
total=total_stages,
)